Heat transfer and flow characteristics of turbulent slot jet impingement on plane and ribbed surfaces


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A computational study is carried out to assess the suitability of various RANS based turbulence models for slot jet impingement on flat and ribbed surfaces with various values of Reynolds number and jet to plate spacing. The com-puted results are compared with the reported experimental data. It was observed that none of the turbulence models considered predicted the heat transfer data accurately. However, some models predicted the experimental data with good trends, e.g., secondary peak and several spikes in Nusselt number for ribbed surface, with a precise computation of the stagnation point Nusselt number. Further, the effects of slot width, rib pitch and jet to ribbed surface spacing were investigated for jet impingement on a ribbed surface. It was observed that the local Nusselt number increased with slot width and rib to plate spacing. It was also observed that increasing Reynolds number had a positive effect on the local heat transfer. With increasing rib pitch the local Nusselt number increased near the stagnation zone but de-creased downstream. The observed flow pattern was different for jet impingement on a ribbed surface than that on a flat surface.

作者简介

A. Shukla

Indian Institute of Technology Delhi

Email: adewan@am.iitd.ac.in
印度, New Delhi

A. Dewan

Indian Institute of Technology Delhi

编辑信件的主要联系方式.
Email: adewan@am.iitd.ac.in
印度, New Delhi

补充文件

附件文件
动作
1. JATS XML

版权所有 © Kutateladze Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciences, 2018