Investigation of a stable boundary layer using an explicit algebraic model of turbulence


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using the recently developed explicit anisotropic algebraic Reynolds-stress model, calculations were performed to study the stable boundary layer dynamics according to the well-known test case of the GABLS1 (Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study) project, where the Richardson number Ri > 1. The model includes the effect of gravity waves, which allows taking into account the momentum maintenance under strong stability conditions. The model shows good agreement with the results of LES simulation. The study aims at obtaining a much more realistic boundary layer, shallower in depth than in traditional first-order models. The case of a constant surface cooling rate is considered. Some interesting features of the model are related to its deduction based on physical principles. In particular, the use of a larger number of prognostic equations in the model makes it possible to obtain more realistic dynamic behavior.

Sobre autores

A. Kurbatskii

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Email: L.Kurbatskaya@ommgp.sscc.ru
Rússia, Novosibirsk

L. Kurbatskaya

Institute of Computational Mathematics and Mathematical Geophysics SB RAS

Autor responsável pela correspondência
Email: L.Kurbatskaya@ommgp.sscc.ru
Rússia, Novosibirsk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Kutateladze Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciences, 2019