Uniqueness of spaces pretangent to metric spaces at infinity


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We find the necessary and sufficient conditions under which an unbounded metric space X has, at infinity, a unique pretangent space \( {\Omega}_{\infty, \tilde{r}}^X \) for every scaling sequence \( \tilde{r} \). In particular, it is proved that \( {\Omega}_{\infty, \tilde{r}}^X \) is unique and isometric to the closure of X for every logarithmic spiral X and every \( \tilde{r} \). It is also shown that the uniqueness of pretangent spaces to subsets of a real line is closely related to the “asymptotic asymmetry” of these subsets.

Sobre autores

Oleksiy Dovgoshey

Institute of Applied Mathematics and Mechanics of the NASU

Autor responsável pela correspondência
Email: oleksiy.dovgoshey@gmail.com
Ucrânia, Slov’yansk

Viktoriya Bilet

Institute of Applied Mathematics and Mechanics of the NASU

Email: oleksiy.dovgoshey@gmail.com
Ucrânia, Slov’yansk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2019