Rolling Simplexes and Their Commensurability IV. A Farewell to Arms!*
- 作者: Gerasimova O.V.1, Razmyslov Y.P.1
-
隶属关系:
- Lomonosov Moscow State University
- 期: 卷 237, 编号 2 (2019)
- 页面: 254-262
- 栏目: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/242322
- DOI: https://doi.org/10.1007/s10958-019-4152-6
- ID: 242322
如何引用文章
详细
This text by pure algebraic reasons outlines why the spectrum of maximal ideals SpecℂA of a countable-dimensional differential ℂ-algebra A of transcendence degree 1 without zero divisors is locally analytic, which means that for any ℂ-homomorphism ψM : A → ℂ(M ∈ SpecℂA) and any a ∈ A the Taylor series \( {\overset{\sim }{\psi}}_M(a)\overset{\mathrm{def}}{=}\sum \limits_{m=0}^{\infty }{\psi}_M\left({a}^{(m)}\right)\frac{z^m}{m!} \) has nonzero radius of convergence depending on the element a ∈ A.
作者简介
O. Gerasimova
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: ynona_olga@rambler.ru
俄罗斯联邦, Moscow
Yu. Razmyslov
Lomonosov Moscow State University
Email: ynona_olga@rambler.ru
俄罗斯联邦, Moscow
补充文件
