Rolling Simplexes and Their Commensurability IV. A Farewell to Arms!*
- Authors: Gerasimova O.V.1, Razmyslov Y.P.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 237, No 2 (2019)
- Pages: 254-262
- Section: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/242322
- DOI: https://doi.org/10.1007/s10958-019-4152-6
- ID: 242322
Cite item
Abstract
This text by pure algebraic reasons outlines why the spectrum of maximal ideals SpecℂA of a countable-dimensional differential ℂ-algebra A of transcendence degree 1 without zero divisors is locally analytic, which means that for any ℂ-homomorphism ψM : A → ℂ(M ∈ SpecℂA) and any a ∈ A the Taylor series \( {\overset{\sim }{\psi}}_M(a)\overset{\mathrm{def}}{=}\sum \limits_{m=0}^{\infty }{\psi}_M\left({a}^{(m)}\right)\frac{z^m}{m!} \) has nonzero radius of convergence depending on the element a ∈ A.
About the authors
O. V. Gerasimova
Lomonosov Moscow State University
Author for correspondence.
Email: ynona_olga@rambler.ru
Russian Federation, Moscow
Yu. P. Razmyslov
Lomonosov Moscow State University
Email: ynona_olga@rambler.ru
Russian Federation, Moscow
Supplementary files
