Kernels of Toeplitz Operators and Rational Interpolation
- Авторы: Kapustin V.V.1
-
Учреждения:
- St.Petersburg Department of Steklov Institute of Mathematics
- Выпуск: Том 243, № 6 (2019)
- Страницы: 880-894
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/243178
- DOI: https://doi.org/10.1007/s10958-019-04588-0
- ID: 243178
Цитировать
Аннотация
The kernel of a Toeplitz operator on the Hardy class H2 in the unit disk is a nearly invariantsubspace of the backward shift operator, and, by D. Hitt’s result, it has the form g · Kω where ω is an inner function, Kω = H2 ⊝ ωH2, and g is an isometric multiplier on Kω. We describe the functions ω and g for the kernel of the Toeplitz operator with symbol .\( \overline{\theta}\varDelta \) where θ is an inner function and Δ is a finite Blaschke product.
Об авторах
V. Kapustin
St.Petersburg Department of Steklov Institute of Mathematics
Автор, ответственный за переписку.
Email: kapustin@pdmi.ras.ru
Россия, St.Petersburg
Дополнительные файлы
