Kernels of Toeplitz Operators and Rational Interpolation
- Autores: Kapustin V.V.1
-
Afiliações:
- St.Petersburg Department of Steklov Institute of Mathematics
- Edição: Volume 243, Nº 6 (2019)
- Páginas: 880-894
- Seção: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/243178
- DOI: https://doi.org/10.1007/s10958-019-04588-0
- ID: 243178
Citar
Resumo
The kernel of a Toeplitz operator on the Hardy class H2 in the unit disk is a nearly invariantsubspace of the backward shift operator, and, by D. Hitt’s result, it has the form g · Kω where ω is an inner function, Kω = H2 ⊝ ωH2, and g is an isometric multiplier on Kω. We describe the functions ω and g for the kernel of the Toeplitz operator with symbol .\( \overline{\theta}\varDelta \) where θ is an inner function and Δ is a finite Blaschke product.
Sobre autores
V. Kapustin
St.Petersburg Department of Steklov Institute of Mathematics
Autor responsável pela correspondência
Email: kapustin@pdmi.ras.ru
Rússia, St.Petersburg
Arquivos suplementares
