Resolvent Kernels of Self-Adjoint Extensions of the Laplace Operator on the Subspace of Solenoidal Vector Functions
- Авторы: Bolokhov T.A.1
-
Учреждения:
- St.Petersburg Department of Steklov Institute of Mathematics
- Выпуск: Том 243, № 6 (2019)
- Страницы: 835-840
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/243169
- DOI: https://doi.org/10.1007/s10958-019-04582-6
- ID: 243169
Цитировать
Аннотация
The Laplace operator on the subspace of solenoidal vector functions of three variables vanishing at the origin together with first derivatives is a symmetric operator with deficiency indices (3). Krein’s theory allows one to derive an expression for the resolvent kernel of a self-adjoint extension of the operator in question as a sum of the Green’s function of the vector Laplace operator and some additional kernel of finite rank.
Об авторах
T. Bolokhov
St.Petersburg Department of Steklov Institute of Mathematics
Автор, ответственный за переписку.
Email: timur@pdmi.ras.ru
Россия, St.Petersburg
Дополнительные файлы
