Spread of Values of a Cantor-Type Fractal Continuous Nonmonotone Function
- 作者: Prats’ovytyi M.V.1, Svynchuk O.V.1
-
隶属关系:
- Drahomanov National Pedagogic University
- 期: 卷 240, 编号 3 (2019)
- 页面: 342-357
- 栏目: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/242748
- DOI: https://doi.org/10.1007/s10958-019-04356-0
- ID: 242748
如何引用文章
详细
By using the \( {Q}_5^{\ast } \)-representation of numbers
determined by the quinary alphabet A5 ≡ {0, 1, 2, 3, 4} and an infinite stochastic matrix ‖qik‖, i ∈ A5, k ∈ N, with positive elements (q0k + q1k + q2k + q3k + q4k = 1) such that \( {\prod}_{k=1}^{\infty}\underset{i}{\max}\left\{{q}_{ik}\right\}=0 \) and β0k = 0, βi + 1, k = βik + qik, \( i=\overline{0,4} \), we define a continuous Cantor-type function by the equality
where δ0n = 0, \( {\delta}_{1n}=\frac{2+{\varepsilon}_n}{4} \), \( {\delta}_{2n}=\frac{2}{4}={\delta}_{3n} \), and \( {\delta}_{4n}=\frac{2-{\varepsilon}_n}{4} \), i.e., δi + 1, n = δin + gin, n ∈ N, and (εn) is a given sequence of real numbers such that 0 ≤ εn ≤ 1. We prove that this function is well defined and continuous. Moreover, it does not have intervals of monotonicity, except the intervals where it is constant. A criterion of bounded variation of the function is also established. We are especially interested in the problem of level sets of the function and in the topological and metric properties of the images of Cantor-type sets.
作者简介
M. Prats’ovytyi
Drahomanov National Pedagogic University
编辑信件的主要联系方式.
Email: prats4444@gmail.com
乌克兰, Pyrohov Str., 9, Kyiv, 01601
O. Svynchuk
Drahomanov National Pedagogic University
Email: prats4444@gmail.com
乌克兰, Pyrohov Str., 9, Kyiv, 01601
补充文件
