Automorphisms of semigroups of k-linked upfamilies
- Авторы: Gavrylkiv V.M.1
-
Учреждения:
- Vasyl Stefanyk Precarpathian National University
- Выпуск: Том 234, № 1 (2018)
- Страницы: 21-34
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/241743
- DOI: https://doi.org/10.1007/s10958-018-3978-7
- ID: 241743
Цитировать
Аннотация
A family \( \mathcal{A} \) of non-empty subsets of a set X is called an upfamily, if, for each set \( A\in \mathcal{A} \); any set B ⊃ A belongs to \( \mathcal{A} \). An upfamily \( \mathrm{\mathcal{L}} \) is called k-linked, if \( \cap \mathrm{\mathcal{F}}\ne \varnothing \) for any subfamily \( \mathrm{\mathcal{F}}\subset \mathrm{\mathcal{L}} \) of cardinality \( \left|\mathrm{\mathcal{F}}\right|\le k \). The extension Nk(X) consists of all k-linked upfamilies on X. Any associative binary operation ∗ : X × X → X can be extended to an associative binary operation ∗ : Nk(X) × Nk(X) → Nk(X). Here, we study automorphisms of the extensions of groups and finite monogenic semigroups. We also describe the automorphism groups of extensions of null semigroups, almost null semigroups, right zero semigroups and left zero semigroups.
Ключевые слова
Об авторах
Volodymyr Gavrylkiv
Vasyl Stefanyk Precarpathian National University
Автор, ответственный за переписку.
Email: vgavrylkiv@gmail.com
Украина, Ivano-Frankivsk
Дополнительные файлы
