Oscillation, Rotation, and Wandering of Solutions to Linear Differential Systems
- Авторы: Sergeev I.N.1
-
Учреждения:
- M. V. Lomonosov Moscow State University
- Выпуск: Том 230, № 5 (2018)
- Страницы: 770-774
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/240927
- DOI: https://doi.org/10.1007/s10958-018-3787-z
- ID: 240927
Цитировать
Аннотация
For solutions of a linear system on the semi-axis, we introduce a series of Lyapunov exponents that describe the oscillation, rotation, and wandering properties of these solutions. In the case of systems with constant matrices, these exponents are closely related to the imaginary parts of the eigenvalues. We examine the problem on the existence of a similar relationship in the case of piecewise constant of arbitrary systems.
Об авторах
I. Sergeev
M. V. Lomonosov Moscow State University
Автор, ответственный за переписку.
Email: igniserg@gmail.com
Россия, Moscow
Дополнительные файлы
