Oscillation, Rotation, and Wandering of Solutions to Linear Differential Systems
- Autores: Sergeev I.N.1
-
Afiliações:
- M. V. Lomonosov Moscow State University
- Edição: Volume 230, Nº 5 (2018)
- Páginas: 770-774
- Seção: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/240927
- DOI: https://doi.org/10.1007/s10958-018-3787-z
- ID: 240927
Citar
Resumo
For solutions of a linear system on the semi-axis, we introduce a series of Lyapunov exponents that describe the oscillation, rotation, and wandering properties of these solutions. In the case of systems with constant matrices, these exponents are closely related to the imaginary parts of the eigenvalues. We examine the problem on the existence of a similar relationship in the case of piecewise constant of arbitrary systems.
Sobre autores
I. Sergeev
M. V. Lomonosov Moscow State University
Autor responsável pela correspondência
Email: igniserg@gmail.com
Rússia, Moscow
Arquivos suplementares
