Integrable Motions of a Pendulum in a Two-Dimensional Plane


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

In this paper, we examine new cases of integrability of dynamical systems on the tangent bundle to a low-dimensional sphere, including flat dynamical systems that describe a rigid body in a nonconservative force field. The problems studied are described by dynamical systems with variable dissipation with zero mean. We detect cases of integrability of equations of motion in transcendental functions (in terms of classification of singularity) that are expressed through finite combinations of elementary functions.

Об авторах

M. Shamolin

Institute of Mechanics of the M. V. Lomonosov Moscow State University

Автор, ответственный за переписку.
Email: shamolin@rambler.ru
Россия, Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).