On the Enumeration of Hypermaps Which are Self-Equivalent with Respect to Reversing the Colors of Vertices


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

A map (S,G) is a closed Riemann surface S with embedded graph G such that S \G is the disjoint union of connected components, called faces, each of which is homeomorphic to an open disk. Tutte began a systematic study of maps in the 1960s and contemporary authors are actively developing it. In the present paper, after recalling the concept of a circular map introduced by the author and Mednykh, a relationship between bipartite maps and circular maps is demonstrated via the concept of the duality of maps. In this way an enumeration formula for the number of bipartite maps with a given number of edges is obtained. A hypermap is a map whose vertices are colored black and white in such a way that every edge connects vertices of different colors. The hypermaps are also known as dessins d’enfants (or Grothendieck’s dessins).

A hypermap is self-equivalent with respect to reversing the colors of vertices if it is equivalent to the hypermap obtained by reversing the colors of its vertices.

The main result of the present paper is an enumeration formula for the number of unrooted hypermaps, regardless of genus, which have n edges and are self-equivalent with respect to reversing the colors of vertices. Bibliography: 13 titles.

Об авторах

M. Deryagina

K. G. Razumovsky Moscow State University of technologies and management; Sobolev Institute of Mathematics

Автор, ответственный за переписку.
Email: madinaz@rambler.ru
Россия, Rostov; Novosibirsk

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).