Closability, Regularity, and Approximation by Graphs for Separable Bilinear Forms


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We consider a countably generated and uniformly closed algebra of bounded functions. We assume that there is a lower semicontinuous, with respect to the supremum norm, quadratic form and that normal contractions operate in a certain sense. Then we prove that a subspace of the effective domain of the quadratic form is naturally isomorphic to a core of a regular Dirichlet form on a locally compact, separable metric space. We also show that any Dirichlet form on a countably generated measure space can be approximated by essentially discrete Dirichlet forms, i.e., energy forms on finite weighted graphs, in the sense of Mosco convergence, i.e., strong resolvent convergence.

Об авторах

M. Hinz

Universität Bielefeld

Автор, ответственный за переписку.
Email: mhinz@math.uni-bielefeld.de
Германия, Bielefeld

A. Teplyaev

University of Connecticut

Email: mhinz@math.uni-bielefeld.de
США, Storrs

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).