On the Convergence Rate for Queueing and Reliability Models Described by Regenerative Processes*


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Convergence rates in total variation are established for some models of queueing theory and reliability theory. The analysis is based on renewal technique and asymptotic results for the renewal function. It is shown that convergence rate has an exponential asymptotics when the distribution function of the regeneration period satisfies Cramér’s condition. Results concerning polynomial convergence are also obtained.

Об авторах

L. Afanasyeva

Lomonosov Moscow State University

Автор, ответственный за переписку.
Email: afanas@mech.math.msu.su
Россия, Moscow

A.V. Tkachenko

National Research University Higher School of Economics

Email: afanas@mech.math.msu.su
Россия, Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).