On Feedback-Principle Control for Systems with Aftereffect Under Incomplete Phase-Coordinate Data
- Autores: Kublanov V.S.1, Maksimov V.I.1,2
-
Afiliações:
- Ural Federal University named after the first President of Russia B. N. Yeltsin
- N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
- Edição: Volume 233, Nº 4 (2018)
- Páginas: 495-513
- Seção: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/241575
- DOI: https://doi.org/10.1007/s10958-018-3940-8
- ID: 241575
Citar
Resumo
For a nonlinear system of differential equations with aftereffect, two mutually complement game minimax (maximin) problems for the quality functional are considered. Assuming that a part of phase coordinates of the system is measured (with error) sufficiently frequently, we provide solving algorithms that are stable with respect to the information noise and computational errors. The proposed algorithms are based on the Krasovskii extremal translation principle.
Sobre autores
V. Kublanov
Ural Federal University named after the first President of Russia B. N. Yeltsin
Autor responsável pela correspondência
Email: kublanov@mail.ru
Rússia, Ekaterinburg
V. Maksimov
Ural Federal University named after the first President of Russia B. N. Yeltsin; N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Email: kublanov@mail.ru
Rússia, Ekaterinburg; Ekaterinburg
Arquivos suplementares
