Lower Bounds on the Number of Leaves in Spanning Trees
- Авторы: Karpov D.V.1
-
Учреждения:
- St. Petersburg Department of Steklov Institute of Mathematics and St. Petersburg State University
- Выпуск: Том 232, № 1 (2018)
- Страницы: 36-43
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/241259
- DOI: https://doi.org/10.1007/s10958-018-3857-2
- ID: 241259
Цитировать
Аннотация
Let G be a connected graph on n ≥ 2 vertices with girth at least g such that the length of a maximal chain of successively adjacent vertices of degree 2 in G does not exceed k ≥ 1. Denote by u(G) the maximum number of leaves in a spanning tree of G. We prove that u(G) ≥ αg,k(υ(G) − k − 2) + 2 where \( {\alpha}_{g,1}=\frac{\left[\frac{g+1}{2}\right]}{4\left[\frac{g+1}{2}\right]+1} \) and \( {\alpha}_{g,k}=\frac{1}{2k+2} \) for k ≥ 2. We present an infinite series of examples showing that all these bounds are tight.
Об авторах
D. Karpov
St. Petersburg Department of Steklov Institute of Mathematics and St. Petersburg State University
Автор, ответственный за переписку.
Email: dvko@yandex.ru
Россия, St. Petersburg
Дополнительные файлы
