Lower Bounds on the Number of Leaves in Spanning Trees


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let G be a connected graph on n ≥ 2 vertices with girth at least g such that the length of a maximal chain of successively adjacent vertices of degree 2 in G does not exceed k ≥ 1. Denote by u(G) the maximum number of leaves in a spanning tree of G. We prove that u(G) ≥ αg,k(υ(G) − k − 2) + 2 where \( {\alpha}_{g,1}=\frac{\left[\frac{g+1}{2}\right]}{4\left[\frac{g+1}{2}\right]+1} \) and \( {\alpha}_{g,k}=\frac{1}{2k+2} \) for k ≥ 2. We present an infinite series of examples showing that all these bounds are tight.

Sobre autores

D. Karpov

St. Petersburg Department of Steklov Institute of Mathematics and St. Petersburg State University

Autor responsável pela correspondência
Email: dvko@yandex.ru
Rússia, St. Petersburg

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018