Exact constants in Jackson-type inequalities for the best mean square approximation in L2(ℝ) and exact values of mean ????-widths of the classes of functions
- Авторы: Vakarchuk S.B.1
-
Учреждения:
- A. Nobel University
- Выпуск: Том 224, № 4 (2017)
- Страницы: 582-603
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/239646
- DOI: https://doi.org/10.1007/s10958-017-3437-x
- ID: 239646
Цитировать
Аннотация
On the classes of functions \( {L}_2^r\left(\mathbb{R}\right) \), where r ∈ℤ+, for the characteristics of smoothness \( {\Lambda}_k\left(f,t\right)={\left\{\left(1/t\right){\int}_0^t\left\Vert {\varDelta}_h^k(f)\left\Vert {}^2\right. dh\right.\right\}}^{\kern0em 1/2},t\in \left(0,\infty \right),k\in \mathbb{N} \), the exact constants in the Jackson-type inequalities have been obtained in the case of the best mean square approximation by entire functions of the exponential type in the space L2(ℝ). The exact values of mean ????-widths of the classes of functions defined by Λk(f) and the majorants Ψ satisfying some conditions are calculated.
Об авторах
Sergei Vakarchuk
A. Nobel University
Автор, ответственный за переписку.
Email: sbvakarchuk@mail.ru
Украина, Dnipro
Дополнительные файлы
