The Kostrikin Radical and Similar Radicals of Lie Algebras


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The existing notion of the Kostrikin radical as a radical in the Kurosh–Amitsur sense on classes of Mal’tsev algebras over rings with 1/6 is not completely justified. More precisely, to the fullest extent it is true for classes of Lie algebras over fields of characteristic zero and, as shown in the given paper, classes of algebraic Lie algebras of degree not greater than n over rings with 1/n! at all n ≥ 1. Similar conclusions are obtained in the paper also for the Jordan, regular, and extremal radicals constructed analogously to the Kostrikin radical.

Об авторах

A. Golubkov

Faculty of Informatics and Control Systems, Bauman Moscow State Technical University

Автор, ответственный за переписку.
Email: artgolub@hotmail.com
Россия, Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).