Differential Equations with Degenerate Operators at the Derivative Depending on an Unknown Function
- Авторлар: Loginov B.V.1, Rousak Y.B.2, Kim-Tyan L.R.3
-
Мекемелер:
- Ulyanovsk State Technical University
- Department of Social Service
- National University of Science and Technology “MISiS”
- Шығарылым: Том 233, № 6 (2018)
- Беттер: 875-904
- Бөлім: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/241715
- DOI: https://doi.org/10.1007/s10958-018-3971-1
- ID: 241715
Дәйексөз келтіру
Аннотация
We develop the theory of generalized Jordan chains of multiparameter operator functions A(λ) : E1→ E2, λ ∈ Λ, dimΛ = k, dimE1 = dimE2 = n, where A0 = A(0) is an irreversible operator. For simplicity, in Secs. 1–3, the geometric multiplicity of λ0 is equal to one, i.e., dimN(A0) = 1, N(A0) = span{φ}, dimN*(\( {A}_0^{\ast } \)) = 1, N*(\( {A}_0^{\ast } \)) = span{ψ}, and it is assumed that the operator function A(λ) is linear with respect to λ. In Sec. 4, the polynomial dependence of A(λ) is linearized. However, the results of existence theorems for bifurcations are obtained for the case where there are several Jordan chains. Applications to degenerate differential equations of the form [A0 + R(·, x)]x′= Bx are provided.
Авторлар туралы
B. Loginov
Ulyanovsk State Technical University
Хат алмасуға жауапты Автор.
Email: panbobl@yandex.ru
Ресей, Ulyanovsk
Yu. Rousak
Department of Social Service
Email: panbobl@yandex.ru
Австралия, Canberra
L. Kim-Tyan
National University of Science and Technology “MISiS”
Email: panbobl@yandex.ru
Ресей, Moscow
Қосымша файлдар
