Differential Equations with Degenerate Operators at the Derivative Depending on an Unknown Function


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We develop the theory of generalized Jordan chains of multiparameter operator functions A(λ) : E1→ E2, λ ∈ Λ, dimΛ = k, dimE1 = dimE2 = n, where A0 = A(0) is an irreversible operator. For simplicity, in Secs. 1–3, the geometric multiplicity of λ0 is equal to one, i.e., dimN(A0) = 1, N(A0) = span{φ}, dimN*(\( {A}_0^{\ast } \)) = 1, N*(\( {A}_0^{\ast } \)) = span{ψ}, and it is assumed that the operator function A(λ) is linear with respect to λ. In Sec. 4, the polynomial dependence of A(λ) is linearized. However, the results of existence theorems for bifurcations are obtained for the case where there are several Jordan chains. Applications to degenerate differential equations of the form [A0 + R, x)]x′= Bx are provided.

Авторлар туралы

B. Loginov

Ulyanovsk State Technical University

Хат алмасуға жауапты Автор.
Email: panbobl@yandex.ru
Ресей, Ulyanovsk

Yu. Rousak

Department of Social Service

Email: panbobl@yandex.ru
Австралия, Canberra

L. Kim-Tyan

National University of Science and Technology “MISiS”

Email: panbobl@yandex.ru
Ресей, Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018