Smooth Solutions to Some Differential-Difference Equations


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

In this paper, we consider a scalar linear differential-difference equation (LDDE) of neutral type \( \overset{\cdot }{x} \)(t) + p(t)\( \overset{\cdot }{x} \)(t − 1) = a(t)x(t − 1) + f(t). We examine the initial-value problem with an initial function in the case where the initial condition is given on an initial set. We use the method of polynomial quasisolutions based on the representation of the unknown function x(t) in the form of a polynomial of degree N. Substituting this function in the original equation we obtain the discrepancy Δ(t) = O(tN), for which an exact analytic representation is obtained. We prove that if a polynomial quasisolution of degree N is taken as an initial function, then the smoothness of the solution generated by this initial functions at connection points is no less than N.

Об авторах

V. Cherepennikov

Melentiev Energy System Institute, Siberian Branch of the RAS

Автор, ответственный за переписку.
Email: vbcher@mail.ru
Россия, Irkutsk

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).