Analysis of the Spectral Stability of the Generalized Runge–Kutta Methods Applied to Initial-Boundary-Value Problems for Equations of the Parabolic Type. I. Explicit Methods


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We develop a general algorithm for the analysis the spectral stability of generalized multistage Runge–Kutta methods of various orders of accuracy as applied to the numerical integration with respect to time of an initial-boundary-value problem for the second-order parabolic equation. The expression for the function of spectral stability is obtained in two alternative forms: on the basis of matrix relations and in the determinant form. We study specific realizations of various generalized explicit Runge–Kutta methods and their spectral stability. It is shown that all explicit generalized Runge–Kutta methods possess the property of conditional spectral stability and the property of conditional monotonicity of the numerical solution in time whose violation leads to the appearance of false oscillations of the approximate solution. The stability function for these methods is polynomial. It is shown that the application of two-stage generalized explicit Runge–Kutta methods leads to the appearance of predictor-corrector-type schemes. In the case of nonstationary one-dimensional heat-conduction problem, on the basis of a one-stage generalized Runge–Kutta method, we obtain the classical two-layer conditionally stable explicit finite-difference scheme on a four-point template. It is demonstrated that the five-stage generalized Runge–Kutta–Merson method is characterized by the weakest condition of spectral stability as compared with all investigated explicit generalized Runge–Kutta methods.

Об авторах

A. Yankovskii

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Division of the RAS

Email: Jade.Santos@springer.com
Россия, Novosibirsk

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).