A Nonperiodic Spline Analog of the Akhiezer–Krein–Favard Operators


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Let σ > 0, m, r ∈ ℕ, mr, let Sσ,m be the space of splines of order m and minimal defect with nodes \( \frac{j\pi }{\sigma } \) (j ∈ ℤ), and let Aσ,m(f)p be the best approximation of a function f by the set Sσ,m in the space Lp(ℝ). It is known that for p = 1,+∞,

\( \begin{array}{l} \sup \hfill \\ {}f\in {W}_p^{(r)}\left(\mathbb{R}\right)\hfill \end{array}\frac{A_{\sigma, m}{(f)}_p}{{\left\Vert {f}^{(r)}\right\Vert}_p}=\frac{K_r}{\sigma^r}, \)
where Kr are the Favard constants. In this paper, linear operators Xσ,r,m with values in Sσ,m such that for all p ∈ [1,+∞] and f ∈ Wp(r)(),
\( {\left\Vert f-{X}_{\sigma, r,m}(f)\right\Vert}_p\le \frac{K_r}{\sigma^r}{\left\Vert {f}^{(r)}\right\Vert}_p \)
are constructed. This proves that the upper bounds indicated above can be achieved by linear methods of approximation, which was previously unknown. Bibliography: 21 titles.

Авторлар туралы

O. Vinogradov

St.Petersburg State University

Хат алмасуға жауапты Автор.
Email: olvin@math.spbu.ru
Ресей, St.Petersburg

A. Gladkaya

St.Petersburg State University

Хат алмасуға жауапты Автор.
Email: anna.v.gladkaya@gmail.com
Ресей, St.Petersburg

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media New York, 2016