Singularity of the Digit Inversor for the Q3-Representation of the Fractional Part of a Real Number, Its Fractal and Integral Properties


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We introduce and study a continuous function I which is called a digit inversor for the Q3-representation of the fractional part of a real number. This representation is determined by a probability vector.(q0; q1; q2) with positive coordinates, generalizes the classical ternary representation, and coincides with this representation for q0 = q1 = q2 = 1/3: The values of this function are obtained from the Q3-representation of the argument by the following change of digits: 0 by 2; 1 by 1; and 2 by 0: The differential, integral, and fractal properties of the inversor are described. We prove that I is a singular function for q0q2.

Об авторах

I.V. Zamrii

Drahomanov National Pedagogic University

Автор, ответственный за переписку.
Email: irina-zamrij@yandex.ru
Украина, Pyrohov Str., 9, Kyiv, 01601

M.V. Prats’ovytyi

Drahomanov National Pedagogic University

Email: irina-zamrij@yandex.ru
Украина, Pyrohov Str., 9, Kyiv, 01601

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).