Cycles on the Hyperbolic Plane of Positive Curvature


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We study properties of hyperbolic and elliptic cycles of a hyperbolic plane Ĥ of positive curvature. An analog of the Pythagorean theorem for a right triangle with a parabolic hypotenuse is proved. For each type of lines, we obtain formulas expressing the length of a chord of a hyperbolic cycle in terms of the radius of the cycle, the measure of the central angle corresponding to the chord, and the radius of curvature of Ĥ. The plane Ĥ is considered in the projective interpretation. Bibliography: 11 titles.

Об авторах

L. Romakina

Saratov State University

Автор, ответственный за переписку.
Email: romakinaln@mail.ru
Россия, Saratov

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).