On Convergence of the Accelerated Newton Method Under Generalized Lipschitz Conditions
- Авторы: Shakhno S.М.1
-
Учреждения:
- Franko Lviv National University
- Выпуск: Том 212, № 1 (2016)
- Страницы: 16-26
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/236965
- DOI: https://doi.org/10.1007/s10958-015-2645-5
- ID: 236965
Цитировать
Аннотация
We study the problem of local convergence of the accelerated Newton method for the solution of nonlinear functional equations under generalized Lipschitz conditions for the first- and second-order Fréchet derivatives. We show that the accelerated method is characterized by the quadratic order of convergence and compare it with the classical Newton method.
Ключевые слова
Дополнительные файлы
