Convergence of Eigenfunctions of a Steklov-Type Problem in a Half-Strip with a Small Hole
- Авторы: Davletov D.B.1, Davletov O.B.2
-
Учреждения:
- M. Akmulla Bashkir State Pedagogical University
- Ufa State Petroleum Technological University
- Выпуск: Том 241, № 5 (2019)
- Страницы: 549-555
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/242916
- DOI: https://doi.org/10.1007/s10958-019-04444-1
- ID: 242916
Цитировать
Аннотация
We consider a Steklov-type problem for the Laplace operator in a half-strip containing a small hole with the Dirichlet conditions on the lateral boundaries and the boundary of the hole and the Steklov spectral condition on the base of the half-strip. We prove that eigenvalues of this problem vanish as the small parameter (the “diameter” of the hole) tends to zero.
Об авторах
D. Davletov
M. Akmulla Bashkir State Pedagogical University
Автор, ответственный за переписку.
Email: davletovdb@mail.ru
Россия, Ufa
O. Davletov
Ufa State Petroleum Technological University
Email: davletovdb@mail.ru
Россия, Ufa
Дополнительные файлы
