Asymptotic Expansion of Posterior Distribution of Parameter Centered by a \( \sqrt{n} \)-Consistent Estimate
- Авторы: Zaikin A.A.1
-
Учреждения:
- Kazan Federal University
- Выпуск: Том 229, № 6 (2018)
- Страницы: 678-697
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/240512
- DOI: https://doi.org/10.1007/s10958-018-3707-2
- ID: 240512
Цитировать
Аннотация
The paper studies asymptotic behavior of posterior distribution of a real parameter centered by a \( \sqrt{n} \)-consistent estimate. The uniform analog of the Bernstein–von Mises theorem is proved. This result is extended to asymptotic expansion of the posterior distribution in powers of n−1/2. This expansion is generalized as the expansion of expectations of functions with polynomial majorant with respect to posterior distribution.
Об авторах
A. Zaikin
Kazan Federal University
Автор, ответственный за переписку.
Email: kaskrin@gmail.com
Россия, Kazan
Дополнительные файлы
