On quasiconformal maps and semilinear equations in the plane


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Assume that Ω is a domain in the complex plane ℂ and A(z) is a symmetric 2×2 matrix function with measurable entries, detA = 1; and such that 1/K|ξ|2 ≤ 〈A(z)ξ, ξ〉 ≤ K|ξ|2, ξ ∈ ℝ2, 1 ≤ K <  ∞ . In particular, for semilinear elliptic equations of the form div (A(z)∇u(z)) = f(u(z)) in Ω; we prove a factorization theorem that asserts that every weak solution u to the above equation can be expressed as the composition u = To????; where ???? : Ω → G stands for a K−quasiconformal homeomorphism generated by the matrix function A(z); and T(w) is a weak solution of the semilinear equation ∇T(w) = J(w)f(T(w)) in G: Here, the weight J(w) is the Jacobian of the inverse mapping ????1: Similar results hold for the corresponding nonlinear parabolic and hyperbolic equations. Some applications of these results to anisotropic media are given.

Об авторах

Vladimir Gutlyanskiĭ

Institute of Applied Mathematics and Mechanics of the NAS of Ukraine

Автор, ответственный за переписку.
Email: vgutlyanskii@gmail.com
Украина, Slavyansk

Olga Nesmelova

Institute of Applied Mathematics and Mechanics of the NAS of Ukraine

Email: vgutlyanskii@gmail.com
Украина, Slavyansk

Vladimir Ryazanov

Institute of Applied Mathematics and Mechanics of the NAS of Ukraine

Email: vgutlyanskii@gmail.com
Украина, Slavyansk

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).