Local Boundary Regularity for the Navier–Stokes Equations in Non-Endpoint Borderline Lorentz Spaces


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Local regularity up to the flat part of the boundary is proved for certain classes of distributional solutions that are LL3,q with q finite. The corresponding result for the interior case was recently proved by Wang and Zhang, see also Phuc’s paper. For local regularity up to the flat part of the boundary, q = 3 was established by G. A. Seregin. Our result can be viewed as an extension of it to L3,q with q finite. New scale-invariant bounds, refined pressure decay estimates near the boundary and development of a convenient new ϵ-regularity criterion, are central themes in providing this extension.

Об авторах

T. Barker

University of Oxford

Автор, ответственный за переписку.
Email: tobias.barker@seh.ox.ac.uk
Великобритания, Oxford

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).