Integer Solutions of Matrix Linear Unilateral and Bilateral Equations over Quadratic Rings
- Авторы: Ladzoryshyn N.B.1
-
Учреждения:
- Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, Ukrainian National Academy of Sciences
- Выпуск: Том 223, № 1 (2017)
- Страницы: 50-59
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/239292
- DOI: https://doi.org/10.1007/s10958-017-3337-0
- ID: 239292
Цитировать
Аннотация
For matrix linear equations AX + BY = C and AX + YB = C over quadratic rings \( \mathbb{Z}\left[\sqrt{k}\right] \), we establish necessary and sufficient conditions for the existence of integer solutions, i.e., solutions X and Y over the ring of integers \( \mathbb{Z} \). We also present the criteria of uniqueness of the integer solutions of these equations and the method for their construction.
Об авторах
N. Ladzoryshyn
Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, Ukrainian National Academy of Sciences
Email: Jade.Santos@springer.com
Украина, Lviv
Дополнительные файлы
