Differentiation of Induced Toric Tiling and Multidimensional Approximations of Algebraic Numbers


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The paper considers the induced tilings \( \mathcal{T} \) = \( \mathcal{T} \) |Kr of the D-dimensional torus \( \mathbb{T} \)D generated by embedded karyons Kr. On \( \mathcal{T} \) , differentiation operations σ : \( \mathcal{T} \) −→\( \mathcal{T} \)σ are defined, which provide the induced tilings \( \mathcal{T} \)σ = \( \mathcal{T} \) |Krσ of the same torus \( \mathbb{T} \)D with the derivative karyon Krσ. They are used for approximation of 0 ∈ \( \mathbb{T} \)D by an infinite sequence of points xj ≡ jα mod ℤD, j = 0, 1, 2, . . . , where α = (α1, . . . , αD) is a vector whose coordinates α1, . . . , αD belong to an algebraic field ℚ(θ) of degree D+1 over the rational field ℚ. To this end, an infinite sequence of convex parallelohedra T (i)\( \mathbb{T} \)D, i = 0, 1, 2, . . ., is constructed, and natural orders m(0) < m(1) < · · · < m(i) < · · · for T (i) are defined. Then the above parallelohedra contain a subsequence of points \( {\left\{{x}_{j^{\prime }}\right\}}_{j^{\prime }=1}^{\infty } \) that are the best approximations of 0 ∈ \( \mathbb{T} \)D. Bibliography: 25 titles.

Об авторах

V. Zhuravlev

Vladimir State University

Автор, ответственный за переписку.
Email: vzhuravlev@mail.ru
Россия, Vladimir

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).