Asymptotic Distributions of Integrated Square Errors of Nonparametric Estimators Based on Indirect Observations Under Dose-Effect Dependence


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The goal of the present article is to establish the asymptotic normality of L2-deviations of the kernel estimators of the distribution function Fn(x), defined as Mn = ∫ (Fn(x) − R(x))2ω(x)dx, where R(x) is a conditional average distribution function of a random variable X, ω(x) is a weight function under dose-effect dependence based on the sample U(n) = {(Wi, Yi), 1 ≤ in}, Wi = I(Xi < Ui) is an indicator of the event (Xi < Ui), and Y is a random variable that depends on U and defines the measurement error in the injected random dose. These results may be used to construct goodness-of-fit and homogeneity tests under dose-effect dependence.

Авторлар туралы

D. Krishtopenko

Lobachevksy State University of Nizhni Novgorod

Email: tikhovm@mail.ru
Ресей, Nizhni Novgorod

M. Tikhov

Lobachevksy State University of Nizhni Novgorod

Хат алмасуға жауапты Автор.
Email: tikhovm@mail.ru
Ресей, Nizhni Novgorod

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media New York, 2017