Asymptotic Distributions of Integrated Square Errors of Nonparametric Estimators Based on Indirect Observations Under Dose-Effect Dependence


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The goal of the present article is to establish the asymptotic normality of L2-deviations of the kernel estimators of the distribution function Fn(x), defined as Mn = ∫ (Fn(x) − R(x))2ω(x)dx, where R(x) is a conditional average distribution function of a random variable X, ω(x) is a weight function under dose-effect dependence based on the sample U(n) = {(Wi, Yi), 1 ≤ in}, Wi = I(Xi < Ui) is an indicator of the event (Xi < Ui), and Y is a random variable that depends on U and defines the measurement error in the injected random dose. These results may be used to construct goodness-of-fit and homogeneity tests under dose-effect dependence.

Об авторах

D. Krishtopenko

Lobachevksy State University of Nizhni Novgorod

Email: tikhovm@mail.ru
Россия, Nizhni Novgorod

M. Tikhov

Lobachevksy State University of Nizhni Novgorod

Автор, ответственный за переписку.
Email: tikhovm@mail.ru
Россия, Nizhni Novgorod

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).