Integrable Systems with Variable Dissipation on the Tangent Bundle of a Sphere
- Авторы: Shamolin M.V.1
-
Учреждения:
- Lomonosov Moscow State University, Institute of Mechanics
- Выпуск: Том 219, № 2 (2016)
- Страницы: 321-335
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/238560
- DOI: https://doi.org/10.1007/s10958-016-3107-4
- ID: 238560
Цитировать
Аннотация
Many problems of multidimensional dynamics involve systems for which the spaces of states are spheres of finite dimension and the spaces of phases are the tangent bundles of such spheres. We study conservative systems and present nonconservative force fields such that the systems involving such forces possess a complete collection of first integrals that are expressed through a finite combination of elementary functions and, in general, are transcendental functions of their variables. Bibliography: 32 titles.
Об авторах
M. Shamolin
Lomonosov Moscow State University, Institute of Mechanics
Автор, ответственный за переписку.
Email: shamolin@rambler.ru
Россия, 1, Michurinskii pr., Moscow, 119192
Дополнительные файлы
