🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 233, No 2 (2018)

Article

Low-Dimensional and Multi-Dimensional Pendulums in Nonconservative Fields. Part 1

Shamolin M.V.

Abstract

In this review, we discuss new cases of integrable systems on the tangent bundles of finitedimensional spheres. Such systems appear in the dynamics of multidimensional rigid bodies in nonconservative fields. These problems are described by systems with variable dissipation with zero mean. We found several new cases of integrability of equations of motion in terms of transcendental functions (in the sense of the classification of singularities) that can be expressed as finite combinations of elementary functions.

Journal of Mathematical Sciences. 2018;233(2):173-299
pages 173-299 views