🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Interpolation Through Approximation in a Bernstein Space


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let Bσ be the Bernstein space of entire functions of exponential type at most σ bounded on the real axis. Consider a sequence Λ = {zn}n∈ℤ, zn = xn + iyn, such that xn+1 − xn ≥ l > 0 and |yn| ≤ L, n ∈ ℤ. Using approximation by functions from Bσ, we prove that for any bounded sequence A = {an}n∈ℤ, |an| ≤ M, n ∈ ℤ, there exists a function f ∈ Bσ with σ ≤ σ0(l,L) such that f|Λ = A.

About the authors

N. A. Shirokov

St.Petersburg State University and High School of Economics

Author for correspondence.
Email: nikolai.shirokov@gmail.com
Russian Federation, St.Petersburg

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Springer Science+Business Media, LLC, part of Springer Nature