Eparability of Schur Rings Over an Abelian Group of Order 4p
- Autores: Ryabov G.1
-
Afiliações:
- Sobolev Institute of Mathematics
- Edição: Volume 243, Nº 4 (2019)
- Páginas: 624-632
- Seção: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/243128
- DOI: https://doi.org/10.1007/s10958-019-04563-9
- ID: 243128
Citar
Resumo
An S-ring (a Schur ring) is said to be separable with respect to a class of groups if every its algebraic isomorphism to an S-ring over a group from is induced by a combinatorial isomorphism. It is proved that every Schur ring over an Abelian group G of order 4p, where p is a prime, is separable with respect to the class of Abelian groups. This implies that the Weisfeiler-Lehman dimension of the class of Cayley graphs over G is at most 3.
Sobre autores
G. Ryabov
Sobolev Institute of Mathematics
Autor responsável pela correspondência
Email: gric2ryabov@gmail.com
Rússia, Novosibirsk
Arquivos suplementares
