🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Eparability of Schur Rings Over an Abelian Group of Order 4p


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An S-ring (a Schur ring) is said to be separable with respect to a class of groups if every its algebraic isomorphism to an S-ring over a group from is induced by a combinatorial isomorphism. It is proved that every Schur ring over an Abelian group G of order 4p, where p is a prime, is separable with respect to the class of Abelian groups. This implies that the Weisfeiler-Lehman dimension of the class of Cayley graphs over G is at most 3.

About the authors

G. Ryabov

Sobolev Institute of Mathematics

Author for correspondence.
Email: gric2ryabov@gmail.com
Russian Federation, Novosibirsk

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Springer Science+Business Media, LLC, part of Springer Nature