Products of Commutators on a General Linear Group Over a Division Algebra
- Авторлар: Egorchenkova E.A.1, Gordeev N.L.1
-
Мекемелер:
- Russian State Pedagogical University
- Шығарылым: Том 243, № 4 (2019)
- Беттер: 561-572
- Бөлім: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/243116
- DOI: https://doi.org/10.1007/s10958-019-04556-8
- ID: 243116
Дәйексөз келтіру
Аннотация
The word maps \( \tilde{w}:\kern0.5em {\mathrm{GL}}_m{(D)}^{2k}\to {\mathrm{GL}}_n(D) \) and \( \tilde{w}:\kern0.5em {D}^{\ast 2k}\to {D}^{\ast } \) for a word \( w=\prod \limits_{i=1}^k\left[{x}_i,{y}_i\right], \) where D is a division algebra over a field K, are considered. It is proved that if \( \tilde{w}\left({D}^{\ast 2k}\right)=\left[{D}^{\ast },{D}^{\ast}\right], \) then \( \tilde{w}\left({\mathrm{GL}}_n(D)\right)\supset {E}_n(D)\backslash Z\left({E}_n(D)\right), \) where En(D) is the subgroup of GLn(D), generated by transvections, and Z(En(D)) is its center. Furthermore if, in addition, n > 2, then \( \tilde{w}\left({E}_n(D)\right)\supset {E}_n(D)\backslash Z\left({E}_n(D)\right). \) The proof of the result is based on an analog of the “Gauss decomposition with prescribed semisimple part” (introduced and studied in two papers of the second author with collaborators) in the case of the group GLn(D), which is also considered in the present paper.
Авторлар туралы
E. Egorchenkova
Russian State Pedagogical University
Хат алмасуға жауапты Автор.
Email: e-egorchenkova@mail.ru
Ресей, St.Petersburg
N. Gordeev
Russian State Pedagogical University
Хат алмасуға жауапты Автор.
Email: nickgordeev@mail.ru
Ресей, St.Petersburg
Қосымша файлдар
