Products of Commutators on a General Linear Group Over a Division Algebra


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The word maps \( \tilde{w}:\kern0.5em {\mathrm{GL}}_m{(D)}^{2k}\to {\mathrm{GL}}_n(D) \) and \( \tilde{w}:\kern0.5em {D}^{\ast 2k}\to {D}^{\ast } \) for a word \( w=\prod \limits_{i=1}^k\left[{x}_i,{y}_i\right], \) where D is a division algebra over a field K, are considered. It is proved that if \( \tilde{w}\left({D}^{\ast 2k}\right)=\left[{D}^{\ast },{D}^{\ast}\right], \) then \( \tilde{w}\left({\mathrm{GL}}_n(D)\right)\supset {E}_n(D)\backslash Z\left({E}_n(D)\right), \) where En(D) is the subgroup of GLn(D), generated by transvections, and Z(En(D)) is its center. Furthermore if, in addition, n > 2, then \( \tilde{w}\left({E}_n(D)\right)\supset {E}_n(D)\backslash Z\left({E}_n(D)\right). \) The proof of the result is based on an analog of the “Gauss decomposition with prescribed semisimple part” (introduced and studied in two papers of the second author with collaborators) in the case of the group GLn(D), which is also considered in the present paper.

Авторлар туралы

E. Egorchenkova

Russian State Pedagogical University

Хат алмасуға жауапты Автор.
Email: e-egorchenkova@mail.ru
Ресей, St.Petersburg

N. Gordeev

Russian State Pedagogical University

Хат алмасуға жауапты Автор.
Email: nickgordeev@mail.ru
Ресей, St.Petersburg

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019