Optimal Morse–Smale Flows with Singularities on the Boundary of a Surface
- 作者: Prishlyak A.O.1, Loseva M.V.1
-
隶属关系:
- Shevchenko Kyiv National University
- 期: 卷 243, 编号 2 (2019)
- 页面: 279-286
- 栏目: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/243088
- DOI: https://doi.org/10.1007/s10958-019-04539-9
- ID: 243088
如何引用文章
详细
We consider the optimal flows on noncompact surfaces with boundary, which have a minimum number of fixed points and all these points lie on the boundary of the surface. It is proved that the flow is optimal if it has a single sink and a single source. We describe the structures of the optimal flows on a simply connected region, on a Möbius strip, on a torus with hole, and on a Klein bottle with hole.
作者简介
A. Prishlyak
Shevchenko Kyiv National University
编辑信件的主要联系方式.
Email: melissa.delgado@springer.com
乌克兰, Volodymyrska Str. 64, Kyiv, 01601
M. Loseva
Shevchenko Kyiv National University
Email: melissa.delgado@springer.com
乌克兰, Volodymyrska Str. 64, Kyiv, 01601
补充文件
