🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Algorithms for Wavelet Decomposition of of the Space of Hermite Type Splines


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the space of (not necessarily polynomial) Hermite type splines we develop algorithms for constructing the spline-wavelet decomposition provided that an arbitrary coarsening of a nonuniform spline-grid is a priori given. The construction is based on approximate relations guaranteeing the asymptotically optimal (with respect to the N-diameter of standard compact sets) approximate properties of this decomposition. We study the structure of restriction and extension matrices and prove that each of these matrices is the one-sided inverse of the transposed other. We propose the decomposition and reconstruction algorithms consisting of a small number of arithmetical actions.

About the authors

Yu. K. Dem’yanovich

St. Petersburg State University

Author for correspondence.
Email: y.demjanovich@spbu.ru
Russian Federation, 28, Universitetskii pr., Petrodvorets, St. Petersburg, 198504

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Springer Science+Business Media, LLC, part of Springer Nature