🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Higher-Order Bessel Equations Integrable in Elementary Functions


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The eigenfunction problem for a scalar Euler operator leads to an ordinary differential equation, which is an analog of higher-order Bessel equations. Its solutions are expressed through elementary functions in the case where the corresponding Euler operator can be factorized in a certain appropriate way. We obtain a formula describing such solutions. We consider the problem on common eigenfunctions of two Euler operators and present commuting Euler operators of orders 4, 6, and 10 and a formula for their common eigenfunction and also commuting operators of orders 6 and 9.

About the authors

Yu. Yu. Bagderina

Institute of Mathematics with Computer Center of Ufa Scientific Center of Russian Academy of Sciences

Author for correspondence.
Email: bagderinayu@yandex.ru
Russian Federation, Ufa

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Springer Science+Business Media, LLC, part of Springer Nature