Algebras of Projectors and Mutually Unbiased Bases in Dimension 7


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We apply methods of the representation theory, combinatorial algebra, and noncommutative geometry to various problems of quantum tomography. We introduce the algebra of projectors that satisfy a certain commutation relation, examine this relation by combinatorial methods, and develop the representation theory of this algebra. We also present a geometrical interpretation of our problem and apply the results obtained to the description of the Petrescu family of mutually unbiased bases in dimension 7.

作者简介

I. Zhdanovskiy

Moscow Institute of Physics and Technology (State University); National Research University “High School of Economics, Laboratory of Algebraic Geometry

编辑信件的主要联系方式.
Email: ijdanov@mail.ru
俄罗斯联邦, Moscow; Moscow

A. Kocherova

Moscow Institute of Physics and Technology (State University)

Email: ijdanov@mail.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019