Approximate controllability of the wave equation with mixed boundary conditions
- 作者: Pestov L.1, Strelnikov D.2
-
隶属关系:
- Immanuel Kant Baltic Federal University
- Vasyl’ Stus Donetsk National University
- 期: 卷 239, 编号 1 (2019)
- 页面: 75-85
- 栏目: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/242628
- DOI: https://doi.org/10.1007/s10958-019-04289-8
- ID: 242628
如何引用文章
详细
We consider initial boundary-value problem for acoustic equation in the time space cylinder Ω × (0; 2T) with unknown variable speed of sound, zero initial data, and mixed boundary conditions. We assume that (Neumann) controls are located at some part Σ Ω [0; T]; Σ ⊂ ????Ω of the lateral surface of the cylinder Ω × (0; T). The domain of observation is Σ × [0; 2T]; and the pressure on another part (????ΩnΣ) × [0; 2T]) is assumed to be zero for any control. We prove the approximate boundary controllability for functions from the subspace V ⊂ H1(Ω) whose traces have vanished on Σ provided that the observation time is 2T more than two acoustic radii of the domain Ω. We give an explicit procedure for solving Boundary Control Problem (BCP) for smooth harmonic functions from V (i.e., we are looking for a boundary control f which generates a wave uf such that uf (., T) approximates any prescribed harmonic function from V ). Moreover, using the Friedrichs–Poincaré inequality, we obtain a conditional estimate for this BCP. Note that, for solving BCP for these harmonic functions, we do not need the knowledge of the speed of sound.
作者简介
Leonid Pestov
Immanuel Kant Baltic Federal University
编辑信件的主要联系方式.
Email: lpestov@kantiana.ru
俄罗斯联邦, Kaliningrad
Dmytro Strelnikov
Vasyl’ Stus Donetsk National University
Email: lpestov@kantiana.ru
乌克兰, Vinnytsya
补充文件
