VAR Model Based Clustering Method for Multivariate Time Series Data


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this study, we develop a clustering method for multivariate time series data. In practical situations, such problems can arise in finance, economics, control theory, and health science. First, we propose to use a simulation based approximation to the test statistic and develop a method to test if two multivariate time series are coming from same VAR process. Then, the testing method is extended to a group of multivariate time series objects. Finally, a new clustering algorithm is developed using the testing method. The proposed algorithm does not use a predetermined number of clusters and finds the best possible clustering from the data. Empirical studies are provided in this paper, and they establish the accuracy of the algorithm. Finally, as a practical example, the algorithm is implemented to identify activities of different persons from a real-life data obtained from single chest-mounted accelerometers worn by different individuals.

Авторлар туралы

S. Deb

Department of Statistics, University of Chicago

Хат алмасуға жауапты Автор.
Email: sdeb@uchicago.edu
АҚШ, Chicago, IL

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019