🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Smoothness of a Holomorphic Function and Its Modulus on the Boundary of a Polydisk


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We prove that if a function f is holomorphic in the polydisk ????n, n ≥ 2, f is continuous in \( \overline{{\mathbb{D}}^n} \), f(z) ≠ 0, z ∈ ????n, and |f| belongs to the α-Hölder class, 0 < α < 1, on the boundary of ????n, then f belongs to the \( \left(\frac{\alpha }{2}-\varepsilon \right) \)-Hölder class on \( \overline{{\mathbb{D}}^n} \) for any ε > 0.

About the authors

N. A. Shirokov

St. Petersburg State University, St. Petersburg Branch of HSE University; St. Petersburg Department of the Steklov Mathematical Institute

Author for correspondence.
Email: nikolai.shirokov@gmail.com
Russian Federation, St. Petersburg; St. Petersburg

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Springer Science+Business Media, LLC, part of Springer Nature