The Normalizer of the Elementary Linear Group of a Module Arising when the Base Ring is Extended


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let S be a commutative ring with 1 and R a unital subring. Let M be a free S-module of rank n ≥ 3. In 1994, V. A. Koibaev described the normalizer of AutS(M) in the group AutR(M). In the present paper, it is proved that the normalizer of the elementary linear group E????(M) in AutR(M) coincides with that of AutS(M), namely, NAutR(M)(E????(M)) = Aut(S/R)⋉AutS(M). If S is free of rank m as an R-module, then NGL(mn,R)(E(n, S)) = Aut(S/R)⋉GL(n, S). Moreover, for any proper ideal A of R,

\( {N}_{GL\left( mn,R\right)}\left(E\left(n,S\right)E\left( mn,R,A\right)\right)={\rho}_A^{-1}\left({N}_{GL\left( mn,R/A\right)}\left(E\left(n,S/ SA\right)\right)\right). \)

Sobre autores

N. Nhat

Vietnam National University

Autor responsável pela correspondência
Email: nhtnhat@hcmus.edu.vn
Vietnã, Ho Chi Minh City

T. Hoi

Vietnam National University

Autor responsável pela correspondência
Email: tnhoi@hcmus.edu.vn
Vietnã, Ho Chi Minh City

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018