An Upper Bound for the Largest Eigenvalue of a Positive Semidefinite Block Banded Matrix
- Авторы: Kolotilina L.Y.1
-
Учреждения:
- St.Petersburg Department of the Steklov Mathematical Institute
- Выпуск: Том 232, № 6 (2018)
- Страницы: 917-920
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/241484
- DOI: https://doi.org/10.1007/s10958-018-3918-6
- ID: 241484
Цитировать
Аннотация
The new upper bound
for the largest eigenvalue of a Hermitian positive semidefinite block banded matrix A = (Aij ) of block semibandwidth p is suggested. In the special case where the diagonal blocks of A are identity matrices, the latter bound reduces to the bound
depending on p only, which improves the bounds established for such matrices earlier and extends the bound
old known for p = 1, i.e., for block tridiagonal matrices, to the general case p ≥ 1.
Об авторах
L. Kolotilina
St.Petersburg Department of the Steklov Mathematical Institute
Автор, ответственный за переписку.
Email: lilikona@mail.ru
Россия, St.Petersburg
Дополнительные файлы
