The Norm Resolvent Convergence for Elliptic Operators in Multi-Dimensional Domains with Small Holes


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider a second order elliptic operator with variable coefficients in a multidimensional domain with a small hole and some classical boundary condition on the hole boundary. We show that the resolvent of this operator converges to the resolvent of the limit operator in the domain without holes in the sense of the norm of bounded operators acting from L2 to \( {W}_2^1 \). For the convergence rate we obtain sharp estimates relative to the smallness order.

作者简介

D. Borisov

Institute of Mathematics, USC RAS; Bashkir State Pedagogical University; University of Hradec Králové

编辑信件的主要联系方式.
Email: borisovdi@yandex.ru
俄罗斯联邦, 112, Chernyshevskii St., Ufa, 450008; 3a, October Revolution St., Ufa, 450000; 62, Rokitanského, Hradec Králové, 50003

A. Mukhametrakhimova

Bashkir State Pedagogical University

Email: borisovdi@yandex.ru
俄罗斯联邦, 3a, October Revolution St., Ufa, 450000

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018