The Norm Resolvent Convergence for Elliptic Operators in Multi-Dimensional Domains with Small Holes
- 作者: Borisov D.I.1,2,3, Mukhametrakhimova A.I.2
-
隶属关系:
- Institute of Mathematics, USC RAS
- Bashkir State Pedagogical University
- University of Hradec Králové
- 期: 卷 232, 编号 3 (2018)
- 页面: 283-298
- 栏目: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/241300
- DOI: https://doi.org/10.1007/s10958-018-3873-2
- ID: 241300
如何引用文章
详细
We consider a second order elliptic operator with variable coefficients in a multidimensional domain with a small hole and some classical boundary condition on the hole boundary. We show that the resolvent of this operator converges to the resolvent of the limit operator in the domain without holes in the sense of the norm of bounded operators acting from L2 to \( {W}_2^1 \). For the convergence rate we obtain sharp estimates relative to the smallness order.
作者简介
D. Borisov
Institute of Mathematics, USC RAS; Bashkir State Pedagogical University; University of Hradec Králové
编辑信件的主要联系方式.
Email: borisovdi@yandex.ru
俄罗斯联邦, 112, Chernyshevskii St., Ufa, 450008; 3a, October Revolution St., Ufa, 450000; 62, Rokitanského, Hradec Králové, 50003
A. Mukhametrakhimova
Bashkir State Pedagogical University
Email: borisovdi@yandex.ru
俄罗斯联邦, 3a, October Revolution St., Ufa, 450000
补充文件
