Nonunitary Representations of the Groups of U(p, q)-currents for q ≥ p > 1


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The purpose of this paper is to give a construction of representations of the group of currents for semisimple groups of rank greater than one. Such groups have no unitary representations in the Fock space, since the semisimple groups of this form have no nontrivial cohomology in faithful irreducible representations. Thus we first construct cohomology of the semisimple groups in nonunitary representations. The principal method is to reduce all constructions to Iwasawa subgroups (solvable subgroups of the semisimple groups), with subsequent extension to the original group. The resulting representation is realized in the so-called quasi-Poisson Hilbert space associated with natural measures on infinite-dimensional spaces.

Об авторах

A. Vershik

St.Petersburg Department of Steklov Institute of Mathematics and St. Petersburg State University; Institute for Information Transmission Problems

Автор, ответственный за переписку.
Email: avershik@gmail.com
Россия, St. Petersburg; Moscow

M. Graev

Institute for System Analysis

Email: avershik@gmail.com
Россия, Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).